VoLTE Interoperability Event Testing Scenarios

MSF-VoLTE-SCN-001-FINAL
Abstract:

This document describes a set of physical scenarios to test the interoperability between key components of the LTE architecture and IMS service layer as part of a VoLTE interoperability event. The interfaces to be tested are specified (in terms of references to the appropriate 3GPP specifications) within this document such that additional implementation agreements for the individual interfaces need not be created. The tests cases are described at a high level, more detailed test plans will be created from these.

By submitting this contribution, the representative(s) of the source company(ies) acknowledge reading and agrees to the MSF IPR Policy Statement.

The Multiservice Switching Forum (MSF) is responsible for developing Implementation Agreements or Architectural Frameworks which can be used by developers and network operators to ensure interoperability between components from different vendors. MSF Implementation Agreements are formally ratified via a Straw Ballot and then a Principal Member Ballot.

Draft MSF Implementation Agreements or Architectural Framework may be published before formal ratification via Straw or Principal Member Ballot. In order for this to take place, the MSF Technical Committee must formally agree that a draft Implementation Agreement or Architectural Framework should be progressed through the balloting process. A Draft MSF Implementation Agreement or Architectural Framework is given a document number in the same manner as an Implementation Agreement.

Draft Implementation Agreements may be revised before or during the full balloting process. The revised document is allocated a new major or minor number and is published. The original Draft Implementation Agreement or Architectural Framework remains published until the Technical Committee votes to withdraw it.

After being ratified by a Principal Member Ballot, the Draft Implementation Agreement or Architectural Framework becomes final. Earlier Draft Implementation Agreements or Architectural Frameworks remain published until the Technical Committee votes to withdraw them.
DISCLAIMER

The information in this publication is believed to be accurate as of its publication date. Such information is subject to change without notice and the Multiservice Switching Forum is not responsible for any errors or omissions. The Multiservice Switching Forum does not assume any responsibility to update or correct any information in this publication. Notwithstanding anything to the contrary, neither the Multiservice Switching Forum nor the publisher make any representation or warranty, expressed or implied, concerning the completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind whether based on theories of tort, contract, strict liability or otherwise, shall be assumed or incurred by the Multiservice Switching Forum, its member companies, or the publisher as a result of reliance or use by any party upon any information contained in this publication. All liability for any implied or express warranty of merchantability or fitness for a particular purpose is hereby disclaimed.

The receipt or any use of this document or its contents does not in any way create by implication or otherwise:

Any express or implied license or right to or under any Multiservice Switching Forum member company’s patent, copyright, trademark or trade secret rights which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor

Any warranty or representation that any Multiservice Switching Forum member companies will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor

Any commitment by a Multiservice Switching Forum company to purchase or otherwise procure any product(s) and/or service(s) that embody any or all of the ideas, technologies, or concepts contained herein; nor

Any form of relationship between any Multiservice Switching Forum member companies and the recipient or user of this document.

Implementation or use of specific Multiservice Switching Forum Implementation Agreements, Architectural Frameworks or recommendations and Multiservice Switching Forum specifications will be voluntary, and no company shall agree or be obliged to implement them by virtue of participation in the Multiservice Switching Forum.

For addition information contact:
Multiservice Switching Forum
39355 California Street, Suite 307, Fremont, CA 94538
(510) 608-5922
(510) 608-5917 (fax)
info@msforum.org
WWW.MSFORUM.ORG
© Multiservice Switching Forum 2009 (or current year)
1 INTRODUCTION ... 6
1.1 TEST SCENARIOS ... 9

2 TESTING SCENARIOS .. 10

2.1 SCENARIO 1 – BASIC INTEROPERABILITY ... 10
2.1.1 Network Components .. 11
2.1.1.1 Scenario 1a ... 11
2.1.1.2 Scenario 1b ... 11
2.1.2 Protocols and Reference Points ... 11
2.1.3 Test Cases ... 11

2.2 SCENARIO 2 – ROAMING AND INTERCONNECT .. 13
2.2.1 Network Components .. 14
2.2.1.1 Scenario 2a ... 14
2.2.1.2 Scenario 2b ... 15
2.2.2 Protocols and Reference Points ... 15
2.2.3 Test Cases ... 16

2.3 SCENARIO 3 – NON-LTE ACCESS ... 17
2.3.1 Network Components .. 17
2.3.1.1 Scenario 3a ... 17
2.3.1.2 Scenario 3b ... 18
2.3.2 Protocols and Reference Points ... 18
2.3.3 Test Cases ... 18

2.4 SCENARIO 4 – HANOVERS .. 19
2.4.1 Network Components .. 20
2.4.1.1 Scenario 4a ... 20
2.4.1.2 Scenario 4b ... 20
2.4.1.3 Scenario 4c ... 21
2.4.2 Protocols and Reference Points ... 21
2.4.3 Test Cases ... 21

2.5 SCENARIO 5 – SELF-ORGANISING NETWORKS ... 23
2.5.1 Network Components .. 23
2.5.1.1 Scenario 5a ... 23
2.5.2 Protocols and Reference Points ... 23
2.5.3 Test Cases ... 23

3 INTERFACE SPECIFICATIONS .. 24

3.1 LTE-UU (UE – eNodeB) .. 24
3.2 S1-MME (UE – MME) .. 24
3.3 S1AP (eNodeB-MME) .. 24
3.4 S1-U (eNodeB - S-GW) .. 24
3.5 X2 (eNodeB – eNodeB) .. 24
3.6 S3 (S4 SGSN – MME) ... 24
3.7 S4 (S4 SGSN – S-GW) ... 24
3.8 S5 (S-GW - P-GW) ... 24
3.9 S6a (HSS – MME) .. 24
3.10 S6b (P-GW – 3GPP AAA) .. 24
3.11 S6d (HSS – S4 SGSN) .. 24
3.12 S8 (S-GW – P-GW) ... 24
3.13 S9 (PCRF – PCRF) .. 24
3.14 S10 (MME – MME) .. 24
3.15 S11 (MME – S-GW) ... 24
3.16 S12 (UTRAN – S-GW) ... 25
3.17 GX (PCRF – P-GW) .. 25
3.18 RX (PCRF - IP APPLICATION [P-CSCF FOR IMS]) ... 25
3.19 GR (SGSN – HSS) ... 25
3.20 GN (SGSN – MME / SGSN – P-GW) ... 25
3.21 GM (UE – P-CSCF) ... 25
3.22 MW (X-CSCF – X-CSCF) .. 25
3.23 ISC (S-CSCF – AS) .. 25
3.24 UT (UE – AS) .. 25
3.25 SGI (EPC BASED PLMN AND ANOTHER PACKET DATA NETWORK) 25

4 GSMA PERMANENT REFERENCE DOCUMENTS (PRDS) ... 26

4.1 IR.65: IMS ROAMING & INTERWORKING GUIDELINES ... 26
4.2 IR.88: LTE ROAMING GUIDELINES ... 26
4.3 IR.92: IMS PROFILE FOR VOICE AND SMS ... 26
1 Introduction

The Evolved Packet System (EPS) is an evolution of the 3GPP defined architecture aimed at coping with the rapid growth in IP data traffic. EPS was defined in 3GPP Release 8 and comprised two main components.

- **Radio Access Network.** The Evolved Universal Terrestrial Radio Access Network (E-UTRAN); this is often referred to as 3G Long Term Evolution (LTE).
- **Core Network.** The Evolved Packet Core (EPC), this is often referred to as the System Architecture Evolution (SAE).

The figure below shows the main components of the EPS in the simplest (non-roaming) configuration.

![Figure 1 - EPS Architecture](image)

The main components of the Architecture are described below.

- **UE (User Equipment).** The User Equipment that is used to connect to the EPS, in the figure above this is an LTE capable UE accessing EPS via the LTE-Uu radio interface.

- **eNodeB.** The evolved RAN (E-UTRAN) consists of a single node, the eNodeB that interfaces with the UE. The eNodeB hosts the Physical (PHY), Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP) layers that include the functionality of user-plane header-compression and encryption. It also offers Radio Resource Control (RRC) functionality corresponding to the control plane. It performs many functions including radio resource management, admission control, scheduling, enforcement of negotiated UL QoS, cell information broadcast, ciphering/deciphering of user and control plane data, and compression/decompression of DL/UL user plane packet headers.

- **MME (Mobility Management Entity).** The Mobility Management Entity (MME) is the key control-node for the LTE access-network. It is responsible for idle mode UE tracking and paging procedures including retransmissions. It is involved in the bearer activation / deactivation process and is also responsible for choosing the S-GW (see below) for the UE at the initial attach and at time of intra-LTE handover involving Core Network node relocation. It is responsible for authenticating the user (in conjunction with the HSS). The NAS (Non-Access Stratum) signalling terminates at the MME which is also responsible for the generation and allocation of temporary identities to the UEs. The MME validates the permission of the UE to camp on the service provider’s PLMN (Public Land Mobile Network) and enforces UE roaming restrictions. The MME is the termination point in the network for ciphering/integrity protection for NAS signalling and handles security key management. Lawful interception of signalling is also a function provided by the MME. The MME provides the control plane function for mobility between LTE and 2G/3G access networks and interfaces with the home HSS for roaming UEs.
• **S-GW (Serving Gateway).** The S-GW routes and forwards user data packets, while also acting as the mobility anchor for the user plane during inter-eNodeB handovers and as the anchor for mobility between LTE and other 3GPP technologies (terminating S4 interface and relaying the traffic between 2G/3G systems and PDN GW). For idle state UE, the S-GW terminates the DL data path and triggers paging when the DL data arrives for the UE. It manages and stores UE contexts and performs replication of the user traffic in case of lawful interception. It is likely that the S-GW and P-GW functions would be realized as a single network element.

• **P-GW (Packet Data network Gateway).** The P-GW provides connectivity between the UE and external packet data networks, it provides the entry and exit point of traffic for the UE. A UE may have simultaneous connectivity with more than one P-GW for accessing multiple Packet Data Networks. The P-GW performs policy enforcement, packet filtering for each user, charging support, lawful interception and packet screening. The P-GW also acts as the anchor for mobility between 3GPP and non-3GPP technologies such as WiMAX or DSL. It is likely that the S-GW and P-GW functions would be realized as a single network element.

• **PCRF (Policy Charging and Rules Function).** The PCRF provides policy control decisions and flow based charging controls. The PCRF determines how a service data flow shall be treated in the enforcement function (P-GW in this case) and ensure that the user plane traffic mapping and treatment is in accordance with the user’s profile.

• **HSS (Home Subscriber Server).** The HSS is a network database that holds both static and dynamic data elements related to subscribers. The HSS provides user profile information to the MME during user authentication.

• **S4-SGSN (Serving GPRS Support Node).** The SGSN supports the legacy access for UTRAN and GERAN. In the EPS architecture (3GPP release 8) the SGSN is enhanced to support the S4 and S3 interfaces (hence referred to as the S4 SGSN). The S4 interface provides control and mobility support between GPRS Core and the 3GPP Anchor function of the Serving GW. The S3 interface enables user and bearer information exchange for inter 3GPP access network mobility.

The main interfaces of the Architecture are described below.

• **LTE-Uu.** The radio interface between the eNodeB and the User Equipment. Interoperability of this interface is out of scope for the scenarios described in this document and is covered by the work of other organizations, principally LSTI (www.lstiforum.org).

• **S1-MME.** The control plane interface between EUTRAN and MME. The protocols used over this interface are the Non-access stratum protocols (NAS).

• **S1-U.** The interface between EUTRAN and the S-GW for per-bearer user plane tunnelling and inter-eNodeB path switching during handover. The transport protocol over this interface is GPRS Tunnelling Protocol-User plane (GTPv1-U).

• **S3.** The interface between the S4-SGSN and the MME enabling user and bearer information exchange for inter 3GPP access network mobility. The protocol used on the S3 interface is GPRS Tunnelling Protocol-Control plane (GTPv2-C).

• **S4.** The interface between the S4-SGSN and the S-GW providing user plane and related control and mobility support. The protocols used on the S4 interface are GPRS Tunnelling Protocol-Control plane (GTPv2-C) and is GPRS Tunnelling Protocol-User plane (GTPv1-U).

• **S5.** The interface provides user plane tunnelling and tunnel management between S-GW and P-GW. It is envisaged that the S-GW and P-GW may be realized as single network element in which case the S5 interface is not exposed. For the test scenarios described within this document. The protocol used on the S5 interface is GTPv1-U/GTPv2-C.
• **S6a.** The interface enables the transfer of subscription and authentication data for authenticating/authorizing user access. The protocol used on the S6a interface is Diameter.

• **S10.** The interface provides for MME – MME information transfer and is used to enable MME relocation. The protocol used on the S10 interface is GPRS Tunnelling Protocol-Control plane (GTPv2-C).

• **S11.** The interface between the MME and S-GW. The protocol used on the S11 interface is GPRS Tunnelling Protocol-Control plane (GTPv2-C).

• **S12.** The interface between the legacy UTRAN and the S-GW for user plane tunnelling when direct tunnel is established. The protocol used on the S12 interface is GPRS Tunnelling Protocol-User plane (GTPv1-U). Usage of the S12 interface is an operator configuration option.

• **Gx.** The interface between the PCRF and the P-GW, allowing the PCRF direct control over the policy enforcement functions of the P-GW. The protocol used on the Gx interface is Diameter.

• **Rx.** The interface between the appropriate Application Function (the P-CSCF in the case of IMS) and the PCRF allowing the Application Function to request the application of an appropriate policy for a session. The protocol used on the Rx interface is Diameter.

• **SGi.** The interface between the P-GW and the Packet Data Network which can be an operator external public or private packet data network or an intra operator packet data network (e.g. for provision of IMS services).
1.1 Test Scenarios

This document describes five test scenarios that will be used to exercise interoperability of the key interfaces of the EPS architecture these being:-

Basic Interoperability. In this scenario a single instance of the EPS architecture will be created using components from different vendors. Testing will include attachment and detachment from the network, Tracking Area Update, IPCAN session establishment, SIP registration (to IMS), SIP session establishment, interaction with IMS Multimedia Telephony, and MME pooling. This scenario focuses on testing interoperability of the functionality as profiled by GSMA PRD IR.92.

Roaming and Interconnect. In this scenario the different roaming and interconnect scenarios are tested including the local breakout model with visited P-CSCF and home operator applications. The test set will be the same as for the Basic Interoperability case (with the exception of MME pooling). This scenario focuses on testing interoperability of the functionality as profiled by GSMA PRD IR.65, GSMA PRD IR.88 and GSMA PRD IR.92.

Non-LTE Access. In this scenario, the ‘legacy’ 3GPP access types of UMTS (UTRAN) and GSM/EDGE (GERAN) are used to interface to the EPC. The test set will be the same as for the Basic Interoperability case (with the exception of MME pooling).

Handover. In this scenario the different handover scenarios are tested, this will include handover between eNodeBs, MME/S-GW relocation and handover between LTE and legacy 3GPP (UMTS, GSM/EDGE) access.

Self-Organising Networks. In this scenario the focus on the S1 and X2 interface aspects of Self-Organising Networks are tested. This shall include aspects of Self Configuration (Dynamic configuration of the S1-MME interface, Dynamic Configuration of the X2 interface) and support of Automatic Neighbour Recognition within the UE and eNodeB.
2 Testing Scenarios

2.1 Scenario 1 – Basic Interoperability

The architecture for the Basic Interoperability test case is shown in the figure below. The interfaces for which interoperability will be tested are shown in red. In some circumstances it may be necessary to interoperate multiple of the interfaces together rather than in isolation.

![Figure 2 - Scenario 1a Physical Architecture – Basic Configuration](image)

NOTE: The Gm interface (UE to P-CSCF) is a focus for testing although not shown in the above figure.

Additionally an extension scenario 1b (shown below) extends the basic architecture in order to demonstrate MME ‘pooling’ and test the interoperability of the pooling function.

![Figure 3 - Scenario 1b Physical Architecture – MME Pooling](image)
2.1.1 **Network Components**

2.1.1.1 **Scenario 1a**

The following components are required for this scenario.

- Two LTE UE's with IMS User Agents
- One eNodeB
- One MME
- One S-GW
- One P-GW
- One PCRF
- One HSS
- One P-CSCF
- One I/S-CSCF
- One MMTel Application Server.

2.1.1.2 **Scenario 1b**

The following components are required for this scenario.

- One LTE UE
- One eNodeB
- Two or more MME's configured in a pool.
- One S-GW
- One P-GW
- One PCRF
- One HSS

2.1.2 **Protocols and Reference Points**

The following reference points will be interoperated in this scenario.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocol</th>
<th>Sub Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-MME</td>
<td>NAS</td>
<td>1a, 1b</td>
</tr>
<tr>
<td>S1-U</td>
<td>GTPv1-U</td>
<td>1a, 1b</td>
</tr>
<tr>
<td>S5</td>
<td>GTPv1-U/GTPv2-C</td>
<td>1a, 1b</td>
</tr>
<tr>
<td>S10</td>
<td>GTPv2-C</td>
<td>1b</td>
</tr>
<tr>
<td>S11</td>
<td>GTPv2-C</td>
<td>1a, 1b</td>
</tr>
<tr>
<td>S6a</td>
<td>Diameter</td>
<td>1a</td>
</tr>
<tr>
<td>Gx</td>
<td>Diameter</td>
<td>1a</td>
</tr>
<tr>
<td>Rx</td>
<td>Diameter</td>
<td>1a</td>
</tr>
<tr>
<td>Gm</td>
<td>IMS SIP</td>
<td>1a</td>
</tr>
<tr>
<td>Mw</td>
<td>IMS SIP</td>
<td>1a</td>
</tr>
<tr>
<td>ISC</td>
<td>IMS SIP</td>
<td>1a</td>
</tr>
<tr>
<td>Ut</td>
<td>XCAP</td>
<td>1a</td>
</tr>
</tbody>
</table>

2.1.3 **Test Cases**

2.1.3.1 **Scenario 1a**

The following tests will be executed in order to verify interoperability of the indicated interfaces between different vendors. This scenario focuses on the verification of the functionality profiled within GSMA PRD IR.92.

- LTE UE Attach (IP-CAN Session Establishment)
- Tracking Area Update
- LTE UE Detach (IP-CAN Session Tear Down)
- IMS UA Registration (via LTE UE)
- IMS Voice Session Establishment (LTE UE to LTE UE)
• IMS Voice Session Termination
• MMTel Supplementary Service Interaction and Configuration

2.1.3.2 Scenario 1b
The following tests will be executed in order to verify interoperability of the indicated interfaces between different vendors.

With a multi-vendor pool (pool of MME instances from different vendors)
• LTE UE Attach (IP-CAN Session Establishment) with load balancing across pool.
• LTE UE Detach (IP-CAN Session Tear Down)
2.2 Scenario 2 – Roaming and Interconnect

The Roaming test scenario represents the test architecture where two subscribers, of the same Operator, perform and end to end call whilst one subscriber is in the HPLMN and the other is roaming in a VPLMN. The roaming subscriber attaches in the visited network where local breakout is applied, a Visited P-CSCF and home IMS services as depicted in Figure 4.

The Interconnect test scenario is where two subscribers, of different operators, perform an end to end call whilst in their respective PLMN's, as depicted in Figure 5.

Figure 4 - Scenario 2a Roaming with Local Breakout, Visited P-CSCF and home routed IMS traffic.

NOTE: The Gm interface (UE to P-CSCF) is a focus for testing although not shown in the above figure.
2.2.1 Network Components

2.2.1.1 Scenario 2a

In the Visited Network
- One LTE UE with IMS User Agent
- One eNodeB
- One MME
- One S-GW
- One P-GW
- One PCRF
- One P-CSCF/IMS-ALG/IMS-AGW
- One Diameter Agent

In the Home Network
- One LTE UE with IMS User Agent
- One eNodeB
- One MME

NOTE: The Gm interface (UE to P-CSCF) is a focus for testing although not shown in the above figure.

NOTE: The IBCF/TrGW may be a single physical node, or two separate nodes utilising the Ix Interface. Although, Ix is not within scope of testing.
2.2.1.2 Scenario 2b

In the PLMN-A

- One LTE UE with IMS User Agent
- One eNodeB
- One MME
- One S-GW
- One P-GW
- One PCRF
- One P-CSCF
- One HSS
- One I/S-CSCF
- One MMTel Application Server
- One IBCF/TrGW

In the PLMN-B

- One LTE UE with IMS User Agent
- One eNodeB
- One MME
- One S-GW
- One P-GW
- One PCRF
- One P-CSCF
- One HSS
- One I/S-CSCF
- One MMTel Application Server
- One IBCF/TrGW

2.2.2 Protocols and Reference Points

The following reference points will be interoperated in this scenario.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocol</th>
<th>Sub-Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6a</td>
<td>Diameter</td>
<td>2a</td>
</tr>
<tr>
<td>S9</td>
<td>Diameter</td>
<td>2a</td>
</tr>
<tr>
<td>Rx</td>
<td>Diameter</td>
<td>2a</td>
</tr>
<tr>
<td>Gx</td>
<td>Diameter</td>
<td>2a</td>
</tr>
<tr>
<td>Gm</td>
<td>IMS SIP</td>
<td>2a, 2b</td>
</tr>
<tr>
<td>Mw</td>
<td>IMS SIP</td>
<td>2a, 2b</td>
</tr>
<tr>
<td>ISC</td>
<td>IMS SIP</td>
<td>2a, 2b</td>
</tr>
<tr>
<td>Ut</td>
<td>XCAP</td>
<td>2a</td>
</tr>
<tr>
<td>Mx</td>
<td>IMS SIP</td>
<td>2b</td>
</tr>
<tr>
<td>Ici</td>
<td>IMS SIP</td>
<td>2b</td>
</tr>
<tr>
<td>Izi</td>
<td>RTP</td>
<td>2b</td>
</tr>
</tbody>
</table>
2.2.3 Test Cases

2.2.3.1 Scenario 2a
The following tests will be executed in order to verify interoperability of the indicated interfaces between different vendors. This scenario focuses on the verification of the functionality profiled within GSMA PRD IR.88 and GSMA PRD IR.92.

- LTE UE Attach in Visted Network (IP-CAN Session Establishment)
- LTE UE Detach in Visited Network (IP-CAN Session Tear Down)
- IMS UA Registration from Visited Network (via LTE UE)
- IMS Voice Session Establishment (between LTE UE in Home Network and LTE UE in Visited Network)
- IMS Voice Session Termination
- MMTel Supplementary Service Interaction and Configuration for LTE UE in Visted Network

2.2.3.2 Scenario 2b
The following tests will be executed in order to verify interoperability of the indicated interfaces between different vendors. This scenario focuses on the verification of the functionality profiled within GSMA PRD IR.65 and GSMA PRD IR.92.

- IMS Voice Session Establishment (LTE UE to LTE UE)
- IMS Voice Session Termination
- MMTel Supplementary Service Interaction
2.3 Scenario 3 – Non-LTE Access

The Non-LTE 3GPP Access test case can be realized in two different ways depending upon the compliance or otherwise of the SGSN. The two different realizations are shown in the figure below.

Figure 6 - Scenario 3a. Non LTE 3GPP Access with S4 SGSN

Figure 7 - Scenario 3b. Non LTE 3GPP Access with legacy SGSN

2.3.1 Network Components

2.3.1.1 Scenario 3a

- One UTRAN with IMS UA
- One GERAN UE with IMS UA
- One LTE UE with IMS UA
- UTRAN access infrastructure
• GERAN Access Infrastructure
• One eNodeB
• One S4 SGSN
• One MME
• One S-GW
• One P-GW
• One PCRF
• One HSS
• One P-CSCF
• One I/S-CSCF
• One MMTel Application Server

2.3.1.2 Scenario 3b
• One UTRAN UE with IMS UA
• One GERAN UE with IMS UA
• One LTE UE with IMS UA
• UTRAN access infrastructure
• GERAN access infrastructure
• One eNodeB
• One Legacy SGSN
• One MME
• One S-GW
• One P-GW
• One PCRF
• One HSS
• One P-CSCF
• One I/S-CSCF
• One MMTel Application Server

2.3.2 Protocols and Reference Points
The following reference points will be interoperated in this scenario.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocol</th>
<th>Sub-Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>GTPv2-C</td>
<td>3a</td>
</tr>
<tr>
<td>S4</td>
<td>GTPv2-C (control plane) / GTPv1-U (user plane)</td>
<td>3a</td>
</tr>
<tr>
<td>S6d</td>
<td>Diameter</td>
<td>3a</td>
</tr>
<tr>
<td>S12</td>
<td>GTPv1-U</td>
<td>3a</td>
</tr>
<tr>
<td>Gr</td>
<td>MAP</td>
<td>3b</td>
</tr>
<tr>
<td>Gn</td>
<td>GTPv1</td>
<td>3b</td>
</tr>
</tbody>
</table>

2.3.3 Test Cases
The following tests will be executed for both scenarios in order to verify interoperability of the indicated interfaces between different vendors.

• UTRAN UE Attach (IP-CAN Session Establishment)
• GERAN UE Attach (IP-CAN Session Establishment)
• UTRAN UE Detach (IP-CAN Session Tear Down)
• GERAN UE Detach (IP-CAN Session Tear Down)
• IMS UA Registration (via UTRAN UE)
• IMS UA Registration (via GERAN UE)
• IMS Voice Session Establishment (combination of GERAN, UTRAN and LTE UE's)
• IMS Voice Session Termination (combination of GERAN, UTRAN and LTE UE's)
• MMTel Supplementary Service Interaction and Configuration
2.4 Scenario 4 – Handovers

This scenario tests the different handover conditions both with registered terminals and with active sessions. There are three sub-test cases for this scenario, namely scenario 4a in which a Handover occurs between eNodeB’s, scenario 4b in which a Handover occurs to/from LTE to 2G/3G access using an S4-SGSN, and scenario 4c in which a Handover occurs to/from LTE to 2G/3G access using a legacy version of the SGSN. The architectures for these scenarios are shown in the figures below.

Figure 8 – Scenario 4a. Handovers between eNodeB’s

Figure 9 – Scenario 4b. Handovers to from LTE and 2G/3G with S4 SGSN
2.4.1 Network Components

2.4.1.1 Scenario 4a
- Two LTE UE’s with IMS User Agents
- Three eNodeB’s
- Two MME
- One S-GW
- One P-GW
- One PCRF
- One HSS
- One P-CSCF
- One I/S-CSCF
- One MMTel Application Server

2.4.1.2 Scenario 4b
- One Multi-mode (LTE – UTRAN/GERAN) UE
- One IMS UA on the Multi-mode UE
- One LTE UE
- One IMS UA on the LTE UE
- Three eNodeB’s
- Two MME
- One S-GW
- One S4 SGSN
- GERAN/UTRAN access infrastructure.
- One P-GW
- One PCRF
- One HSS
- One P-CSCF
- One I/S-CSCF
- One MMTel Application Server
2.4.1.3 Scenario 4c

- One Multi-mode (LTE – UTRAN/GERAN) UE
- One IMS UA on the Multi-mode UE
- One LTE UE
- One IMS UA on the LTE UE
- Three eNodeB's
- Two MME
- One S-GW
- One Legacy SGSN
- GERAN/UTRAN access infrastructure.
- One P-GW
- One PCRF
- One HSS
- One P-CSCF
- One I/S-CSCF
- One MMTel Application Server.

2.4.2 Protocols and Reference Points

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocol</th>
<th>Sub Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-MME</td>
<td>NAS</td>
<td>4a, 4b</td>
</tr>
<tr>
<td>S1-U</td>
<td>GTPv1-U</td>
<td>4a, 4b</td>
</tr>
<tr>
<td>X2</td>
<td>X2 AP (signalling) / GTPv1-U (user plane)</td>
<td>4a, 4b</td>
</tr>
<tr>
<td>S3</td>
<td>GTPv2-C</td>
<td>4a</td>
</tr>
<tr>
<td>S4</td>
<td>GTPv2-C (control plane) / GTPv1-U (user plane)</td>
<td>4a</td>
</tr>
<tr>
<td>S10</td>
<td>GTPv2-C</td>
<td>4a, 4b</td>
</tr>
<tr>
<td>S11</td>
<td>GTPv2-C</td>
<td>4a, 4b</td>
</tr>
<tr>
<td>S12</td>
<td>GTPv1-U</td>
<td>4a</td>
</tr>
<tr>
<td>S6a</td>
<td>Diameter</td>
<td>4a, 4b, 4c</td>
</tr>
<tr>
<td>S6d</td>
<td>Diameter</td>
<td>4b</td>
</tr>
<tr>
<td>Gn</td>
<td>GTPv1</td>
<td>4b, 4c</td>
</tr>
<tr>
<td>Gr</td>
<td>MAP</td>
<td>4b, 4c</td>
</tr>
</tbody>
</table>

2.4.3 Test Cases

The handover scenarios will be tested both for registered terminals and with established (IMS) sessions.

Basic Attachment.
- The Multimode UE attaches to eNB (y) and hands over to eNB(x), the Multimode UE remains attached.
- The Multimode UE attaches to eNB(y) and hands over to eNB(z), moving from MME(a) to MME(b), the Multimode UE remains attached.
- The Multimode UE attaches to eNB(y) and hands over to eNB(z), moving from S-GW(a) to S-GW(b), the Multimode UE remains attached.
- The Multimode UE attaches to eNB (x) and hands over to UTRAN/GERAN, the Multimode UE remains attached.
- The Multimode UE attaches to UTRAN/GERAN and hands over to eNB(x), the Multimode UE remains attached.

IMS Registration.
- The Multimode UE attached to eNodeB (y) and the UA registers with the IMS Core. The Multimode UE hands over to eNodeB(x), the UA remains registered with the IMS Core.
- The Multimode UE attaches to eNodeB(y) and the UA registers with the IMS Core. The Multimode UE hands over to eNodeB(z), moving from MME(a) to MME(b), the UA remains registered with the IMS Core.
• The Multimode UE attaches to eNodeB(y) and the UA registers with the IMS Core. The Multimode UE hands over to eNodeB(z), moving from S-GW(a) to S-GW(b), the UA remains registered with the IMS Core.

• The Multimode UE attaches to eNodeB(x) and the UA registers with the IMS Core. The Multimode UE hands over to UTRAN/GERAN, the UA remains registered with the IMS Core.

• The Multimode UE attaches to UTRAN/GERAN and the UA registers with the IMS Core. The Multimode UE hands over to eNodeB(x), the UA remains registered with the IMS Core.

IMS Session.

• The Multimode UE attaches to eNodeB(y), the UA registers with the IMS Core and establishes an IMS voice session with the LTE UE that is also registered with the IMS. The Multimode UE hands over to eNodeB(x), the IMS voice session remains active.

• The Multimode UE attaches to eNodeB(y), the UA registers with the IMS Core and establishes an IMS voice session with the LTE UE that is also registered with the IMS. The Multimode UE hands over to eNodeB(z), moving from MME(a) to MME(b), the IMS voice session remains active.

• The Multimode UE attaches to eNodeB(y), the UA registers with the IMS Core and establishes an IMS voice session with the LTE UE that is also registered with the IMS. The Multimode UE hands over to eNodeB(z), moving from S-GW(a) to S-GW(b), the IMS session remains active.

• The Multimode UE attaches to eNodeB(x), the UA registers with the IMS Core and establishes an IMS voice session with the LTE UE that is also registered with the IMS. The Multimode UE hands over to UTRAN/GERAN, the IMS session remains active over the PS connection.

• The Multimode UE attaches to UTRAN/GERAN, the UA registers with the IMS Core and establishes an IMS voice session over the PS connection with the LTE UE that is also registered with the IMS. The Multimode UE hands over to eNodeB(x), the IMS session remains active.
2.5 Scenario 5 – Self-Organising Networks

In this scenario the focus on the S1 and X2 interface aspects of Self-Organising Networks are tested. This shall include aspects of Self Configuration (Dynamic configuration of the S1-MME interface, Dynamic Configuration of the X2 interface) and support of Automatic Neighbour Recognition within the UE and eNodeB.

2.5.1 Network Components

2.5.1.1 Scenario 5a
- One LTE UE
- Two eNodeB’s
- Two MME
- One S-GW
- One P-GW
- One PCRF
- One HSS

2.5.2 Protocols and Reference Points

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocol</th>
<th>Sub Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-MME</td>
<td>NAS</td>
<td>5a</td>
</tr>
<tr>
<td>S1-U</td>
<td>GTPv1-U</td>
<td>5a</td>
</tr>
<tr>
<td>S1AP</td>
<td>S1AP (S1 Application Protocol)</td>
<td>5a</td>
</tr>
<tr>
<td>X2</td>
<td>X2 AP (signalling) / GTPv1-U (user plane)</td>
<td>5a</td>
</tr>
</tbody>
</table>

2.5.3 Test Cases
- Dynamic allocation of Physical Cell Identifiers (PCI’s) to eNodeB Cells
- Dynamic updating of Neighbour Relation Tables (NRT)
- Dynamic eNodeB to Core Network MME (S1-MME) Configuration
- Dynamic eNodeB to eNodeB (X2) Configuration

Figure 11 - Scenario 5a Physical Architecture – Basic Configuration
3 Interface Specifications

The following is a set of references for the interfaces tested in these scenarios.

3.1 LTE-Uu (UE – eNodeB)
 3GPP TS 36.300 (E-UTRAN protocol)

3.2 S1-MME (UE – MME)
 3GPP TS 24.301 (Non Access Stratum)

3.3 S1AP (eNodeB-MME)
 3GPP TS 36.413 (S1 Application Protocol)

3.4 S1-U (eNodeB - S-GW)
 3GPP TS 29.281 (GTPv1-U)

3.5 X2 (eNodeB – eNodeB)
 Signaling 3GPP TS 36.423 (X2 Application Protocol).
 User Plane 3GPP TS 29.281 (GTPv1-U)

3.6 S3 (S4 SGSN – MME)
 3GPP TS 29.274 (GTPv2-C)

3.7 S4 (S4 SGSN – S-GW)
 Control Plane 3GPP TS 29.274 (GTPv2-C).
 User Plane 3GPP TS 29.281 (GTPv1-U).

3.8 S5 (S-GW - P-GW)
 User Plane 3GPP TS 29.281 (GTPv1-U)
 Control Plane 3GPP TS 29.274 (GTPv2-C)

3.9 S6a (HSS – MME)
 3GPP TS 29.272 (Diameter)

3.10 S6b (P-GW – 3GPP AAA)
 3GPP TS 29.273 (Diameter)

3.11 S6d (HSS – S4 SGSN)
 3GPP TS 29.272 (Diameter)

3.12 S8 (S-GW – P-GW)
 User Plane 3GPP TS 29.281 (GTPv1-U)
 Control Plane 3GPP TS 29.274 (GTPv2-C)

3.13 S9 (PCRF – PCRF)
 3GPP TS 29.215 (Diameter).

3.14 S10 (MME – MME)
 3GPP TS 29.274 (GTPv2-C).

3.15 S11 (MME – S-GW)
 3GPP TS 29.274 (GTPv2-C)
3.16 S12 (UTRAN – S-GW)
3GPP TS 29.281 (GTPv1-U, utilized for direct tunnel model).

3.17 Gx (PCRF – P-GW)
3GPP TS 29.212 (Diameter).

3.18 Rx (PCRF - IP Application [P-CSCF for IMS])
3GPP TS 29.214 (Diameter).

3.19 Gr (SGSN – HSS)
3GPP TS 29.002 (MAP)

3.20 Gn (SGSN – MME / SGSN – P-GW)
Control Plane 3GPP TS 29.060 (GTPv1-C)
User Plane 3GPP TS 29.281 (GTPv1-U)

3.21 Gm (UE – P-CSCF)
3GPP TS 24.229 (IMS SIP)

3.22 Mw (x-CSCF – x-CSCF)
3GPP TS 24.229 (IMS SIP)

3.23 ISC (S-CSCF – AS)
3GPP TS 24.229 (IMS SIP)

3.24 Ut (UE – AS)
3GPP TS 24.623 (XCAP)

3.25 SGi (EPC based PLMN and another packet data network)
3GPP TS 29.061 (IP)
4 GSMA Permanent Reference Documents (PRDs)

The following is a set of GSMA PRDs to be tested in these scenarios.

4.1 IR.65: IMS Roaming & Interworking Guidelines
4.2 IR.88: LTE Roaming Guidelines
4.3 IR.92: IMS Profile for Voice and SMS