Implementation Agreement for MEGACO/H.248 Profile for a Media Gateway Controller/Trunking Gateway using IP Trunks

MSF-IA-MEGACO.003-FINAL
Multiservice Switching Forum
Implementation Agreement

Contribution Number: msforum2001.212.02
Document Filename: MSF-IA-MEGACO.003-FINAL
Working Group: Media Control
Title: Implementation Agreement for MEGACO/H.248 Profile for a Media Gateway Controller/Trunking Gateway using IP trunks
Editor: Chris Gallon Contact Information: c.gallon@ftel.com
Editor: Susumu Yamamoto Contact Information: yamamoto.susumu@lab.ntt.co.jp
Editor: Masaki Nakagawa Contact Information: nakagawa.masaki@jp.fujitsu.com
Working Group Chairperson: Carol Waller

Date: February 17, 2002

Abstract:
This contribution is an Implementation Agreement for a Media Gateway Controller/Trunking Gateway using IP trunks. This is a MEGACO/H.248 profile.

The Multiservice Switching Forum (MSF) is responsible for developing Implementation Agreements or Architectural Frameworks which can be used by developers and network operators to ensure interoperability between components from different vendors. MSF Implementation Agreements are formally ratified via a Straw Ballot and then a Principal Member Ballot.

Draft MSF Implementation Agreements or Architectural Framework may be published before formal ratification via Straw or Principal Member Ballot. In order for this to take place, the MSF Technical Committee must formally agree that a draft Implementation Agreement or Architectural Framework should be progressed through the balloting process. A Draft MSF Implementation Agreement or Architectural Framework is given a document number in the same manner as an Implementation Agreement.

Draft Implementation Agreements may be revised before or during the full balloting process. The revised document is allocated a new major or minor number and is published. The original Draft Implementation Agreement or Architectural Framework remains published until the Technical Committee votes to withdraw it.

After being ratified by a Principal Member Ballot, the Draft Implementation Agreement or Architectural Framework becomes final. Earlier Draft Implementation Agreements or Architectural Frameworks remain published until the Technical Committee votes to withdraw them.

DISCLAIMER
The information in this publication is believed to be accurate as of its publication date. Such information is subject to change without notice and the Multiservice Switching Forum is not responsible for any errors or omissions. The Multiservice Switching Forum does not assume any responsibility to update or correct any information in this publication. Notwithstanding anything to the contrary, neither the Multiservice Switching Forum nor the publisher make any representation or warranty, expressed or implied, concerning the completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind whether based on theories of tort, contract, strict liability or otherwise, shall be assumed or incurred by the Multiservice Switching Forum, its member companies, or the publisher as a result of reliance or use by any party upon any information contained in this publication. All liability for any implied or express warranty of merchantability or fitness for a particular purpose is hereby disclaimed.
The receipt or any use of this document or its contents does not in any way create by implication or otherwise:

Any express or implied license or right to or under any Multiservice Switching Forum member company’s patent, copyright, trademark or trade secret rights which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor

Any warranty or representation that any Multiservice Switching Forum member companies will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor

Any commitment by a Multiservice Switching Forum company to purchase or otherwise procure any product(s) and/or service(s) that embody any or all of the ideas, technologies, or concepts contained herein; nor

Any form of relationship between any Multiservice Switching Forum member companies and the recipient or user of this document.

Implementation or use of specific Multiservice Switching Forum Implementation Agreements, Architectural Frameworks or recommendations and Multiservice Switching Forum specifications will be voluntary, and no company shall agree or be obliged to implement them by virtue of participation in the Multiservice Switching Forum.

For additional information contact:
Multiservice Switching Forum
39355 California Street, Suite 307, Fremont, CA 94538
(510) 608-5922
(510) 608-5917 (fax)
info@msforum.org
WWW.MSFORUM.ORG

© Multiservice Switching Forum 2002 (or current year)
About the Multiservice Switching Forum

The Multiservice Switching Forum (MSF) mission is to accelerate the deployment of open communications systems that realize economic benefits, which result from the flexible support of a full range of network services using multiple infrastructure technologies. The focus is on development of architectures and industry agreements that enable interoperability and innovation in a rapidly evolving environment.

The intent of this Forum is to support the rapid advancement of an efficient and compatible technology base that promotes a competitive marketplace. The Forum activities include promoting global development of multiservice switching system technology; promoting worldwide compatibility and interoperability; encouraging input to appropriate national and international standards bodies; and identifying, selecting, augmenting as appropriate, and publishing multiservice switching system implementation agreement drawn from appropriate national and international standards.

Principal Membership

Principal Membership in the Multiservice Switching Forum entitles the member company to attend all annual, general and special meetings of the Forum, as well as all committee meetings of the Forum.

Principal Members are entitled to:

- Committee meeting attendance
- One vote on all Forum issues
- Access to all working documents and meeting minutes
- Run for Board of Director and Committee officer positions
- Submit Technical Committee and Marketing Committee contributions

Membership Guidelines:

- There are two levels of membership, Principal Membership and Educational Membership.
- Annual dues for Principal Membership are $15,000 USD for companies with an estimated revenue of over $50,000,000.00 (50 million) USD per year, and $5,000.00 USD for companies with an estimated revenue of under $50,000,000.00 (50 million) USD per year.
- Annual dues for Educational Membership are $500.00 USD per year. Educational Membership is by individual, not by institution, and Educational Members must provide proof of affiliation with a college or university.
- Membership is valid through the end of the membership year in which the application is received.
- Membership year runs January 1 - December 31.
- Membership dues are valid through December 31st of the current year.
- A one-time prorated membership will be accepted when the initial dues payment includes the sum for each month dues of the current year AND full payment for the following year’s dues.
For additional information or to become an MSF Member, please contact the MSF office.
Multiservice Switching Forum
39355 California Street, Suite 307, Fremont, CA 94538
(510) 608-5922
(510) 608-5917 (fax)
info@msforum.org
WWW.MSFORUM.ORG
1 Multiservice Switching Forum

The charter of the Multiservice Switching Forum is to develop and promote implementation agreements for protocols and interfaces that enable an open architecture for multiservice switching systems supporting ATM, Frame Relay, IP, Voice and Video services. A Multiservice Switching System is a distributed switching (frame, cell or packet based) system designed to support voice, video, private line, and data such as Asynchronous Transfer Mode (ATM), Frame Relay, and Internet Protocol (IP) services. Multiservice switching systems may use a broad range of access technologies, including traditional Time Division Multiplexing (TDM), Digital Subscriber Line (xDSL), wireless data, and cable modems. MSF Implementation Agreements define the requirements of the interfaces between components of a MSS.

The current MSF Reference Architecture, as defined in MSF2000.053.1, Multiservice Switching Forum System Architecture Implementation Agreement\(^1\), provides a reference point, np, between the Network Edge Control Function and the Logical Port Function (see Figure 1). Thus, the reference point ‘np’ (in conjunction with bc, bs or bs’) can be defined as the interface for the MEGACO/H.248 protocol defined jointly by the IETF and ITU-T. Please refer to MSF-ARCH-001-00-FINAL-IA (MSF2000.053.1), Appendix E, Mapping of the MEGACO/H.248 protocol onto MSF defined reference points, for more details on the combinations of reference points (np+bs, np+bc, np+bs’) that make up MEGACO/H.248.

In Figure 2, MEGACO is realized over the np+bc reference points because the Bearer Control Function (BCF) (in this figure) is in the media gateway. This Implementation Agreement is based on the architecture realization shown in Figure 3, in the case where the MG uses RSVP paths or MPLS tunnels to provide bearers through the packet network these shall be supported by the Bearer Control Function (BCF). Please note that this is a specific implementation and there will be others for other situations.

Notes:
- Italicized reference points are not considered open reference points for release 1.
- Bearer transport reference points are not shown.
- Management functions overlaid on functional architecture
* The Partitioning Function maintains partition integrity between partitions of a partitioned entity.

Figure 1 MSF Reference Architecture Corresponding to Functional Definitions
2 MEGACO/H.248

The IETF and ITU-T have worked together to define protocols between elements of a physically decomposed multimedia gateway as specified in H.323. This protocol was published as Recommendation H.248 in the ITU and in RFC3015, Megaco Protocol Version 1.0, November 2000, in the IETF. Since this protocol provides for a number of different types of gateways, H.248 has grouped options into packages that can be defined for the MG and MGCs, and has provided a facility for profiling a specific use for the protocol by a group such as the MSF. Additional MEGACO/H.248 information can be found in the H.248 Implementor’s Guide, June 8th, 2001, ITU-T PL-015. Additional package information can be found in “H.248 Packages Guide Release 1, June 2001, ITU-T PL-026.”

2.1 MEGACO/H.248 Packages

As defined in Megaco/H.248, packages define properties, events, signals and statistics. These packages can be defined by the IETF (as separate RFCs) and by the ITU-T (as an annex to H.248). This implementation agreement identifies the set of packages that must be supported by an MSF IP trunking gateway.

Please note that not all the packages cited in this version of the implementation agreement have been approved. However, as this functionality is required, and the packages are available for review, they have been included in this document. As more packages become approved, this document will be updated to include that information.
2.2 Megaco/H.248 Profiles

Profiles in Megaco/H.248 define option values, sets of packages, naming conventions and other details for an entire set of applications. Profiles may be defined by any organization. This implementation agreement defines one such profile.

3 Assumptions

The MSF will issue several Implementation Agreements (IAs) which will be used in MSF Interoperability testing and demonstrations. This agreement does not define the test suites or scenarios for the testing, but will provide the framework for those tests. This IA defines a profile for a media gateway controller and a trunking gateway using IP trunks. This profile will have a single IANA designation; however, it will have multiple packages that can be specified within this profile.

This release of the implementation agreement is geared specifically toward MSF interoperability testing.

4 Definitions

A Trunking Gateway, as used in this IA, is an interface between Public Switched Telephony Network (PSTN) trunks, typically connected to a Local Exchange, and an IP centric packet network (see Figure 3). The Trunking Gateway has no subscriber interfaces but may have MF trunks.

The present IA mandates that the BCF be in the MG. Typically the BCF would contain support for an appropriate IGP (Interior Gateway Protocol) and possibly support for RSVP or MPLS traffic engineering mechanisms. However this IA does not preclude simple MGs that do not support such functionality. One such example is a MG connected to the packet network via a single ethernet interface that uses a default route to an adjacent router.

*Note that MGC to MGC communication is not addressed in this IA. This interface is covered in other MSF Implementation Agreements. They are included in this figure to show a network scenario.

Figure 3 - Functional Gateway/Controller Architecture
G.711 SHALL be supported. G.726 and G.729a may be supported.
G.168 and G.165 SHALL be supported.
Silence suppression may be supported according to G729 Annex B.

5 Megaco/H.248 Profile

5.1 Identifications
This profile shall be entitled “MSF IP Trunking Gateway to Controller Profile”. The version number shall be 1.0. This name shall be returned from a conforming gateway when sending the ServiceChange message as part of initial registration of the MG in the Profile section of the ServiceChange Descriptor. There will be one profile although packages beyond the base set will be defined for this profile.

5.2 Base Packages Implemented
A conforming gateway shall implement at least the following packages:

<table>
<thead>
<tr>
<th>Package Name</th>
<th>ID</th>
<th>Ver</th>
<th>Defined In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic</td>
<td>g</td>
<td>1</td>
<td>ITU-T H.248 Annex E</td>
</tr>
<tr>
<td>Base Root</td>
<td>root</td>
<td>1</td>
<td>ITU-T H.248 Annex E</td>
</tr>
<tr>
<td>Continuity</td>
<td>ct</td>
<td>1</td>
<td>ITU-T H.248 Annex E</td>
</tr>
<tr>
<td>Network</td>
<td>nt</td>
<td>1</td>
<td>ITU-T H.248 Annex E</td>
</tr>
<tr>
<td>TDM Circuit</td>
<td>tdm</td>
<td>1</td>
<td>ITU-T H.248 Annex E</td>
</tr>
<tr>
<td>RTP</td>
<td>rtp</td>
<td>1</td>
<td>ITU-T H.248 Annex E</td>
</tr>
</tbody>
</table>

5.3 Optional Packages
A conforming gateway may implement the following packages:

<table>
<thead>
<tr>
<th>Package Name</th>
<th>ID</th>
<th>Ver</th>
<th>Defined In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone Generator</td>
<td>tonegen</td>
<td>1</td>
<td>ITU-T H.248/IETF RFC3015 Annex E</td>
</tr>
<tr>
<td>Tone Detect</td>
<td>tonedet</td>
<td>1</td>
<td>ITU-T H.248/IETF RFC3015 Annex E</td>
</tr>
<tr>
<td>Call Progress Gen</td>
<td>cg</td>
<td>1</td>
<td>ITU-T H.248/IETF RFC3015 Annex E</td>
</tr>
<tr>
<td>Call Progress Detect</td>
<td>cd</td>
<td>1</td>
<td>ITU-T H.248/IETF RFC3015 Annex E</td>
</tr>
<tr>
<td>Announcements</td>
<td>an</td>
<td>1</td>
<td>ITU-T H.248 Annex K</td>
</tr>
<tr>
<td>DTMF Detect</td>
<td>dd</td>
<td>1</td>
<td>ITU-T H.248/IETF RFC3015 Annex E</td>
</tr>
<tr>
<td>DTMF Generate</td>
<td>dg</td>
<td>1</td>
<td>ITU-T H.248/IETF RFC3015 Annex E</td>
</tr>
<tr>
<td>Basic CAS</td>
<td>bcas</td>
<td>1</td>
<td>IETF draft - draft-manyfolks-megaco-caspackage-01.txt</td>
</tr>
<tr>
<td>Robbed Bit</td>
<td>rbs</td>
<td>1</td>
<td>IETF draft - draft-manyfolks-megaco-caspackage-01.txt</td>
</tr>
<tr>
<td>MF Gen</td>
<td>mfg</td>
<td>1</td>
<td>IETF draft - draft-bothwell-megaco-mftonepkgs-02.txt</td>
</tr>
<tr>
<td>MF Detect</td>
<td>mfd</td>
<td>1</td>
<td>IETF draft - draft-bothwell-megaco-mftonepkgs-02.txt</td>
</tr>
<tr>
<td>Fax/Modem</td>
<td>ftmd</td>
<td>1</td>
<td>ITU-T H.248 Annex F</td>
</tr>
<tr>
<td>Fax</td>
<td>fax</td>
<td>1</td>
<td>ITU-T H.248 Annex F</td>
</tr>
<tr>
<td>Basic QoS</td>
<td>b_qos</td>
<td>1</td>
<td>IETF draft - draft-madhubabu-megaco-qospackage-00.txt</td>
</tr>
<tr>
<td>RSVP</td>
<td>rsvp</td>
<td>1</td>
<td>IETF draft - draft-madhubabu-megaco-qospackage-00.txt</td>
</tr>
<tr>
<td>Diff Serv</td>
<td>diff</td>
<td>1</td>
<td>IETF draft - draft-madhubabu-megaco-qospackage-00.txt</td>
</tr>
<tr>
<td>NAS</td>
<td>nas</td>
<td>1</td>
<td>IETF draft - draft-ietf-megaco-naspkg-03.txt</td>
</tr>
<tr>
<td>Carrier tones gen</td>
<td>carr</td>
<td>1</td>
<td>IETF draft - draft-boyle-megaco-tonepkgs-06.txt</td>
</tr>
</tbody>
</table>
5.4 Naming Conventions

5.4.1 Gateway Naming Conventions
The MG name, used in Registration and in the header of commands, SHALL be a domain name or domain address or device name.

The MGC name, used in Registration and in the header of commands, SHALL be a domain name or domain address for UDP transport. For SCTP transport, the MGC name SHALL be a domain name or a domain address or device name.

5.4.2 Termination Names
This profile uses hierarchical termination names in which the slash “/” serves as a separator.

5.4.2.1 PSTN Trunks
PSTN trunk names SHALL be hierarchical with the top level provisioned, and lower levels represented by numeric identifiers following the STM1 hierarchy. For example, an E1 trunk could be named h356z19m3, and the first individual ds0 in that trunk would then be h356z19m3/01. A DS3 trunk could be named DAL3 and its DS1s would then start as DAL3/01/*, and its DS0s would be named starting with DAL3/01/01.

In this example, numbering of the DS0s and DS1s are started at one (1). Alternatively, the numbering could begin at zero (0).

5.4.2.2 IP Trunks
There SHALL be up to two levels of hierarchy. The first level shall be provisioned in the MG and represents the interface. The second level is a unique number representing the pair of RTP/RTCP sessions.

5.5 Topology Descriptor
A gateway conforming to this profile is not required to implement Topology and MGCs expecting to control gateways meeting this specification shall not assume Topology is implemented.

5.6 Service Change Descriptor
The Gateway shall allow one primary and one or more secondary MGCs to be provisioned for registration.

The MGC SHALL be able to control multiple MGs simultaneously. Support of virtual MGs as defined in H.248 Section 11.1 is optional.

5.7 Transaction Timers
Gateways and MGCs SHALL keep application level transaction timers as outlined in Section 8 of RFC3015, Megaco Protocol Version 1.0.

5.8 Transport
Gateways shall implement UDP/ALF and may implement SCTP\(^2\) transport of H.248.

\(^2\) IETF RFC2960
MGCs SHALL implement UDP/ALF and SCTP transport of H.248. Gateways and MGCs conforming to this profile are expected to transport H.248 signaling over IP.

5.9 Security
This release of the IA does not utilize security.

5.10 Encoding
Conforming Gateways SHALL support text encoding.

5.11 Timestamp
A timestamp SHALL be sent on every Notify message.

5.12 DigitMaps

5.12.1 Storage
The Gateway is not required to store DigitMaps.

5.12.2 Naming Conventions
The DigitMap names shall be 1 to 32 alphanumeric